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The kinematics of Compton-e�ect with violated invariance of the

velocity of light has been considered. It has been shown that in this

case faster-than-light motion of the Compton electron is possible.

The motion (if it exists in reality) begins with the energy of the

incident 
-quantum above 360 keV.
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1 Introduction

The Compton scattering is a fundamental e�ect of nuclear physics [1, 2].

The successive description of its kinematics is essential to any version of the

theory. We shall consider the kinematics of this e�ect in connection with the

violation of invariance of the speed of light in the works where the space-time

interval takes the form [3] - [5]:

ds
2 = c

2
dt

2 � dx2 � dy2 � dz
2
; (1)

where t is the time; x; y; z are the space variables, jcj < 1 is the velocity

of light considered as a variable. It is seen from here that in the space with

the metric (1) the event point coordinates are the �ve numbers: the time

t, the space variables x; y; z; and the velocity of light c. Let us denote this

space by V 5(t;x; c). In view of the absence of the space-time variables in an

explicit form in front of the di�erentials dt; dx; dy; dz, the 3-space R3(x) �
V

5(t;x; c) is homogeneous and isotropic, the time t is homogeneous. This is in

agreement with the basic properties of space and time in classical mechanics

[6] and Special Relativity (SR) [7] - [9]. Let us suppose that on a particle

trajectory the time has a similar property to the universal Newton time in

classical physics:

dt = dt0 ! t = t0: (2)

As a result the velocity of light on the particle trajectory will be depend on

the particle velocity by the law

c = �c0
p
1 + v2=c0

2; (3)

where c0 = c
0

0 = 3 �1010 cm/s is the proper value of the velocity of light. The

particle motion perturbs the metric (1), as a result of which the spectrum of c-

values is given by the inequality (c0 � jcj <1) � (jcj <1). When v 6= 0, the

metric (1) admits a faster-than-light motion (at the velocity v > 3�1010 cm/s)

of the particle with real mass [3] - [5]. This feature distinguishes the above

mentioned publications, and the present work from the well-known theories

such as SR [7] - [9], the theory of superluminal motions with imaginemass [14]

- [19], the theory of motion with anisotropic tensor of mass [14, 19, 20], and

the versions of electrodynamics with instantaneous and retarded interactions

[21] - [23]. It is the purpose of the present work to study the kinematics of

Compton-e�ect in space-time with the metric (1) taking into account Formula

(2) and the positive velocity of light (3).
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2 Space-time transformations, group

properties

The expression for the interval (1), which we write in the form ds =

F (x; c; dx) > 0, dx = (dt; dx; dy; dz), possesses the signs inherent in

Finsler space: F (x; c;�dx) = F (x; c; dx) > 0; F (x; c; kdx) = kF (x; c; dx),

s =
R
F (x; _x; c)dt =

R
(c2 � _x2)1=2dt; F (x; k _x; kc) = kF (x; _x; c), i.e. F is the

positively homogeneous function of degree 1 with respect to dt; dx; dy; dz, v

and c [10, 11]. By replacing the variables

x
0 =

tZ
0

cd�; x
1;2;3 = x; y; z; x

5 = c (4)

let us map the space V
5(t;x; c) with the metric (1) on to the space

F
5(x0;x; x5) with the metric

ds
2 = (dx0)2 � (dx1)2 � (dx2)2 � (dx3)2; (5)

where x0 will be also considered as re-determined "time" in the case of the

particle velocity v 6= const. The components of the metric tensor gab =

(+;�;�;�; 0) (a; b = 0; 1; 2; 3; 5) of the space F 5 indicate that F 5, as its

subspaces with the metric tensor g�� = diag(+;�;�;�) (�; � = 0; 1; 2; 3),

includes the Minkowski M4
1-space on the hyper-plane c = c0 with the local

time x0 = c0t; the Minkowski M4
2-space with the non-local time (4); zero

subspace R1
0(x

5), which coincides with the x5-axis [12]. (In the M4
1-space a

point on the x0-axis corresponds to a point on the t-axis. In theM4
2-space a

point on the x0-axis corresponds to an integral
R t
0
c(� )d� ). The in�nitesimal

space-time transformations, retaining the expression (5) under the condition

(2), take the form

dx
0� = L

�
�dx

�
; x

05 = x
5(1� � � u)=

p
1� �2; �; � = 0; 1; 2; 3: (6)

Here L�� is the matrix of the Lorentz group L6, � = V=c = const, u = v=c.

For the Lorentz group L1 and free motions in F 5 and V 5 the corresponding

homogeneous integral transformations are

x
00 =

x
0 � �x1p
1� �2 ; x

01 =
x
1 � �x

0p
1� �2

; x
02;3 = x

2;3
; x

05 = x
5 1� �u1p

1� �2
; (7)

x
0 =

x� V tp
1� V 2=c2

; t
0 = t; y

0 = y; z
0 = z; c

0 = c
1� V vx=c

2p
1� V 2=c2

; (8)
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where u1 = vx=c, vx = x=t. They transform into itself the equation of the

surface (x0)2 � (x1)2 � (x2)2 � (x3)2 = 0! c
2
t
2 � x2� y2 � z2 = 0 (the zero

cone [12] in F 5, the surface of 4-order in V 5). In M4
1-space the zero cone

changes to the light cone c0
2
t
2 � x

2 � y
2 � z

2 = 0. The transformations (7)

change to the Lorentz transformations. The motions are described by SR [7]

- [9]. Let us denote the generator inducing the transformations (7) by N01 =

x0@1�x1@0+u1x5@5 (N01 = ct@x+x@t=c+(x=ct)(c@c�t@t) = ct@x+(x=t)@c in

the space V 5). It belongs to Lee algebra of the operators N�� = x�@��x�@�,
Q0 = (1=t)@c; P0 = (1=c)@t; Qi = @i; Z = (c@c � t@t); i = 1; 2; 3:

[Q�; Q�] = 0;

[N�� ; N��] = �g��N�� + g��N�� + g��N�� � g��N��;

[Q�; N��] = g��Q� � g��Q� ;

[P0; Q�] = �g0�Z=x02;
[P0; N��] = g0�P� � g0�P� � (g0�x0 � g00x�)g0�Z=x0

2;

[Z;Q�] = [Z;P0] = [Z;N��] = 0;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

(9)

The algebra, in general case, is in�nitely dimensional. As �nite subalgebras

it includes the algebra of operators N�� (isomorphic to Lee algebra of

Lorentz group [24])), the algebra of operators N�� ; Q� (isomorphic to Lee

algebra of Poincar�e group [24]), the algebra of commutative operators

[Q�; Q�]; [Z;Q�]; [Z;P0]; [Z;N��]. As a result Lorentz and Poincar�e groups

arise in the theory not only in the case the speed of light is invariant on

the hyper-plane c = c0, but also in the case the time is invariant within the

transformations (8) in the V 5-space. Poincar�e was �rst to draw attention to

Lorentz group as a symmetry group of the light cone equation c0
2
t
2�x2 = 0

on the hyper-plane c = c0 [25]. The space of V 5-type and the zero cone

c
2
t
2� x2 = 0 were introduced in the papers [26, 27] in analyzing symmetries

of the wave equation with a non-invariant velocity of light.

Let us restrict the consideration of algebra (9) on a set of functions � =

�(x0;x) � f(x0;x; x5) and take into account Z� = 0 in this case. The

algebra (9) reduces to the Lee algebra of 12-dimensional group (P10; T1)X�1,

where L6 � P10 involves hyperbolic rotations on the planes (x0; xi) � M
4
2

(the generators N0i � N��), T4 involves translations along the x0; xi axes

with t=const (the generators Q�), T1 includes translations along the x
0 axis

with c=const (the generator P0), �1 is the scale transformation of the x5

axis (generator Z = x
5
@5). By using the Campbell-Hausdorf formula [28], it

can be shown that consecutive operations of Q0 and P0 are equivalent to the

translation along the x0 axis: t0 = e
�Q0 te

��Q0 = t + �[Q0; t] + : : : = t; c
0 =

e
�Q0ce

��Q0 = c+ �[Q0; c] + : : : = c+ �=t; c
0
t
0 = ct+ �; t

00 = e
�P0 t

0
e
��P0 =
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t
0+�[P0; t

0]+: : := t
0+�=c0; c00 = e

�P0c
0
e
��P0 = c

0+�[P0; c
0]+: : := c

0
; c

00
t
00 =

c
0
t
0 + � = ct + �, where � = � + �, � and � are the group parameters. The

presence of the P0 operator corresponds to motion with time if the invariance

of the speed of light is violated. Thus, that is impossible within Minkowski

M
4
1-space on the hyper-plane c = c0 is possible within the Minkowski M4

2-

space entering into the Finsler space with metric (1).

3 Momentum, energy, equations of motion

Let us start from the connections between the partial derivatives:

@

@t
=
@x

0

@t

@

@x0
+
@x

i

@t

@

@xi
+
@x

5

@t

@

@x5
= c

@

@x0
=) @

@x0
=

1

c

@

@t
;

@

@x
=
@x

0

@x

@

@x0
+
@x

i

@x

@

@xi
+
@x

5

@x

@

@x5
=

@

@x1
=) @

@x1
=

@

@x
;

(10)

@

@c
=
@x

0

@c

@

@x0
+
@x

i

@c

@

@xi
+
@x

5

@c

@

@x5
=
t

c

@

@t
+

@

@x5
=) x

5 @

@x5
= c

@

@c
� t @

@t
:

Here the expressions for @=@y and @=@z are analogous to @=@x. It is assumed,

that the velocity of light does not depend on space variables in the range of

interactions - rc = 0. As a result the values of the type (
R t
0
d�@c=@x)@=@x0

vanish. The summing is made over twice repeating index. Then [4]:

- As in SR, the parameter � = V=c is in the range of 0 � � < 10.

- As in SR, dx0 is the total di�erential.

- Generally speaking, the "time" x0 =
R t
0
cd� is a functional of c(� ).

- The property of the parameter �=const is compatible with V (t); c(t).

- The condition rc(x0) = 0 $ rc(t) = 0 is invariant on the trajectory of a

particle.

Keeping this in the mind, let us construct the theory in the M4
2-space

which is similar to SR in the M4
1-space. By using the relations (10), let us

map it on to the V 5-space with the metric (1). Following [8], we start with

the integral of action:

S = Sm + Smf + Sf = �mc0
Z
ds� e

c0

Z
A�dx

� � 1

16�c0

Z
F��F

��
d
4
x =Z h

�mc0

p
1� u2 +

e

c0
(A � u� �)

i
dx

0 � 1

8�c0

Z
(E2 �H2)d3xdx0 =
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�mc0

Z
ds� 1

c0

Z
A�j

�
d
4
x� 1

16�c0

Z
F��F

��
d
4
x: (11)

Here m is the mass of a particle; e is the electrical charge; Sm = �mc0
R
ds =

�mc0
R p

1� u2dx
0 = �mc0

R
(c0=c)dx

0 is the action for a free particle;

Sf = �(1=16�c0)
R
F��F

��
d
4
x is the action for a free electromagnetic �eld;

Smf = �(e=c0)
R
A�dx

� = �(1=c0)
R
A�j

�
d
4
x is the action corresponding

to the interaction of the charge with electromagnetic �eld; A� = (�;A) is

the 4-potential; A� = g��A
� = (�;�A); j� = (�; �u) is the 4-vector of

the density of a current; � is the density of the charge; u = v=c is the

dimensionless 3-velocity of a particle; E = �@A=@x0�r� is the electric �eld;
H = rXA is the magnetic �eld; F�� = @A�=@x

� � @A�=@x
� is the tensor

of an electromagnetic �eld; F��F
�� = 2(H2 � E

2); d4x = dx
0
dx

1
dx

2
dx

3 is

the element of the invariant 4-volume. The speed of light c0, the mass of a

particle m, the electrical charge e are invariant constants of the theory.

In spite of the fact that the action (11) is similar to the action of SR, it

di�ers from the SR action [8]. The electrical �eld has been chosen in the form

E = �@A=@x0 �r� = �(1=c)@A=@t �r� instead of E = �(1=c0)@A=@t�
r� [8] [8]. The current density has been chosen in the form j

� = (�; �u) =

(�; �v=c) instead of j� = (�; �v) [8]. The current density is similar to the

expression from Pauli monograph [7] with the only di�erence that j in (11)

is equal to �v=c instead of �v=c0 [7]. Analogously, the propagation velocity

of the 4-potential in (11) is equal to c instead of c0 [8]. The action (11) goes

into the SR action, if we replace c by c0 within the corresponding expressions.

In accordance with the construction, the action (11) is Lorentz invariant and

does not depend on the x5 variable. As a result the action (11) is invariant

with respect to the group (P10; T1)X�1, induced by the reduction of the

algebra (9) on the set of functions � = �(x0;x).

Lagrangian L, the generalized momentum P and the generalized energy

H take the form:

L = �mc0
p
1� u2 +

e

c0
(A � u� �); (12)

P =
@L

@u
=

mc0up
1� u2

+
e

c0
A = p+

e

c0
A = mv +

e

c0
A; (13)

H = P � u� L =
mc0c + e�

c0

=
E + e�

c0

: (14)

p = mv; E = mcc0 = mc0
2

s
1 +

v2

c0
2
: (15)
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Here p, E are the momentum and energy of a particle with mass m. They

may be combined into 4- momentum p
�

p
� = mc0u

� =
�
mc0c

c0
;mcu

i
�
=
� E
c0
;mv

�
; (16)

the components of which are related as follows:

p�p
� =

E2
c0

2
� p2 = m

2
c0

2; p =
E
c0c

v; p =
E
c0c

c; if m = 0; v = c: (17)

It is seen from here that the momentum of a particle with the mass m = 0

is independent of the absolute value of the particle velocity v = c. It is

determined only by the energy of a particle: p = nE=c0; n = c=c. (In SR

this property is masked by c0 being constant).

Next, let us start from the mechanical [8] and the �eld equations [30] of

Lagrange

d

dx0

@L

@u
� @L

@x
= 0;

@

@x�

@L
@(@A�=@x

�)
� @L
@A�

= 0; (18)

where L is the Lagrangian (12), L = �(1=c0)A�j
� � (1=16�c0)F��F

�� is the

density of Lagrange function for electromagnetic �eld and interaction between

the �eld and the charge. Taking into consideration the equality r(a � b) =
(a � r)b+ (b � r)a + ax(rxb) + bx(rxa), the permutable relationships for
the tensor of electromagnetic �eld, the expression @(F��F

��)=@(@A�=@x
�) =

�4F�� [8], we �nd the equations of motions of electromagnetic �eld and of

a particle in the �eld

dp

dx0
=

e

c0
E +

e

c0
uxH;

dE
dx0

= eE � u;
@F��

@x�
+
@F��

@x�
+
@F��

@x�
= 0;

@F
��

@x�
+ 4�j� = 0:

(19)

(Here p = mc0u=
p
1� u2; E = mc0

2
=
p
1� u2). In the variables

(x0; x1; x2; x3) equations (19) coincide exactly with the equations [8] and

are the same for both the Minkowski spaces - M4
1 and M

4
2. The di�erence

arises if the equations are written with the variables (t; x; y; z). In the case

of M4
1-Minkowski space the equations coincide with SR equations [8], if we

put c = c0; dx
0 = c0dt into them. (In accordance with going the action (11)

into the SR action [8]). In the case ofM4
2-Minkowski space it is necessary to

take into account dx0 = cdt;
p
1� u2 = c0=c, and the relations (10). Then

the equations of motions take the forms [3] - [5]:

8



dp

dt
= m

dv

dt
=

c

c0
eE +

e

c0
vxH;

dE
dt

= eE � v ! m
dc

dt
=

e

c0
v �E: (20)

rXE+
1

c

@H

@t
= 0; r �E = 4��;

rXH� 1

c

@E

@t
= 4��

v

c
; r �H = 0;

(21)

where c(t) = c0(1 + v
2
=c0

2)1=2 = c(0)[1 + (e=mc0c(0))
R t
0
v � Ed� ], rc = 0.

Equations (20) - (21), if considered as the whole, form a set of the self-

consistent nonlinear equations. (In the approximation v2=c0
2 � 1 by c � c0,

they describe the motion of non-relativistic particle in electromagnetic �eld

and coincide with ± [29]). They admit faster-than-light motion of a particle

with the real mass m, rest energy E0 = mc0
2 and the velocity

v =
p
E2 �m2c0

4=mc0 > c0; (22)

if the energy of a particle satis�es the inequality E > p2E0. For example, for

the proton the rest energy is equal 938 MeV. The 1 GeV proton velocity is

about 0:37c0. Faster-than-light motion of the proton begins with the energy

� 1:33 GeV. The faster-than-light electron motion (E0 = 511 keV) begins

with the energy � 723 keV. The calculated velocity of 1 GeV electron is

� 2000 c0. Thus, if M
4
2-Minkowski space were realized in the nature, the

neutron physics of nuclear reactors could be formulated in the approximation

v � c0, as in SR. The particle physics on modern accelerators would be the

physics of faster-than-light motions. The results obtained are given in Table

1 in comparison with the analogous results from classical mechanics and SR.

In this Table the designations are used: dx2 = dx
2 + dy

2 + dz
2, T is the

kinetic energy, � = V=c.

It is shown in [3] - [5], how a lot of experiments (interpreted only by

SR until the present time) may be explained with the help of the proposed

theory. For example, these are the experiments of Michelson and Fizeau,

aberration of light, the appearance of atmospheric �-mesons on the Earth

surface, Doppler-e�ect, a number of the known experiments for the proof of

independence of the speed of light from the emitter velocity, decay of unstable

particles, generation of new particles in nuclear reactions, Compton-e�ect,

photo-e�ect. We consider the kinematics of Compton-e�ect in more detail.
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Table 1

The initial data and basic results from the classical mechanics, the SR and

the present work

The classical mechanics Special Relativity Present work

[6] [7]� [9] [3]� [5]

ds
2 = dx2 ds

2 = c0
2
dt

2 � dx2 ds
2 = c

2
dt

2 � dx2

x
0 = x� V t; x

0 =
x� V tp
1� �2

; x
0 =

x� V tp
1� �2

;

y
0 = y; z

0 = z; y
0 = y; z

0 = z; y
0 = y; z

0 = z;

t
0 = t; t

0 =
t � V x=c02p

1� �2
; t

0 = t;

c
0 = c

p
1� 2�nx + �2 c0

0 = c0 c
0 = c

1� V vx=c
2p

1� �2

p = mv p =
mvp

1� v2=c0
2

p = mv

T =
mv

2

2
E = mc0

2p
1� v2=c0

2
E = mc0

2
p
1 + v2=c0

2

T =
p
2

2m
E2 � c0

2
p
2 = m

2
c0

4 E2 � c0
2
p
2 = m

2
c0

4

m
dv

dt
= eE +

e

c0
vxH[29]

dp

dt
= eE +

e

c0
vxH m

dv

dt
=

c

c0
eE+

e

c0
vxH

dT

dt
= ev �E dE

dt
= ev �E dE

dt
= ev �E
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4 Motion integrals: momentum and energy

Let us note that dx0, according to the construction, is the total di�erential.

As a result x0 possess property of the time forM4
2-Minkowski space. Therefore,

by virtue of Lagrange mechanical equations, the momentum and energy (15)

for an isolated system are the integrals of motion because of the homogeneity

of space-time [6, 8]. The formula for the kinetic energy takes the form

T = E �mc0
2 = mc0

2(
c

c0
� 1) = mc0

2
�s

1 +
v2

c0
2
� 1
�
� 1

2
mv

2
: (23)

With v2 � c0
2 expression (23) coincides with the expression for kinetic energy

in classical mechanics (as in SR). Variations of E and p with time determine

the dynamics of a particle forM4
2-Minkowski space. With v2 � c0

2 the new

dynamics goes into the Newton dynamics.

Let us use the expressions (15) and (23) to describe the motion of a lot of

number of particles. Following [2], we shall consider the reaction in which the

particles with masses m0

1;m
0

2; : : : ;m
0

n are produced in colliding the moving

particle m1 with the immobile particle m2 (the target). Let us write the

conservation laws in the form

p1 = p01 + p02 + : : :+ p0n;

E1 +m2c0
2 = E 01 + E 02 + : : :+ E 0n; (24)

where the momentum and energy of each of the particle are given by the

formulas (15) (p0i = m
0

iv
0

i; E 0i = m
0

ic
0

ic0). By using the relationship

between the momentum and energy E12 = c0
2p1

2+m1
2
c0

4 and the property

of invariance of the expression (
P

i Ei)2 � c0
2(
P

i pi)
2 = inv, we may write

the expression of the threshold energy E1;thr of reaction (24) in the form

(E1;thr +m2c0
2)2 � c02p12 = (

X
i

m
0

i)
2
c0

4
: (25)

From here we �nd the threshold kinetic energy

T1;thr =
(
P

im
0

i +m1 +m2)(
P

im
0

i �m1 �m2)

2m2

c0
2
: (26)

It coincides with the similar formula from SR [2]. The di�erence arises in

calculating the velocity of a hitting particle and the threshold velocity of the

reaction products. Taking into account E1;thr = T1;thr +m1c0
2, we �nd the

11



threshold velocity of the particle m1:

v1 = c0

sh
1 +

(
P

im
0
i +m1 +m2)(

P
im

0
i �m1 �m2)

2m1m2

i2
� 1: (27)

It follows from the momentum-energy conservation law (24) that the velocity

of the conglomerate of particles
P

im
0

i moving at the same (threshold)

velocity V 0, will be equal

V
0 =

p1P
im

0
i
=

m1P
im

0
i
v1 (28)

In the case of proton-proton collision p+ + p
+ = p

+ + p
+ + p

+ + p
�, when

m1 = m2 = m
0

i = mp, we obtain that the threshold energy for creating the

antiproton is equal E1;thr = 7mpc0
2 � 6:6 GeV in accordance with [2], and

v1 =
p
48c0 � 6:9c0, V

0 =
p
3c0 � 1:7c0 in accordance with [4]. In SR these

values are equal E1;thr = 7mpc0
2 � 6:6 GeV [2], v1 ! w1 =

p
48=49c0 �

0:99c0, V
0 !W

0 =
p
3=4c0 � 0:87c0 respectively.

5 Consequences of momentum-energy

conservation law for Compton-e�ect

Let us consider the kinematics of 
-quantum scattering on a free electron with

the rest energy E0 = mc0
2, where m is the mass of electron. By using the

momentum-energy conservation law and without concretizing the expressions

for the momentum p0 and energy E 0 of the scattered electron, we �nd

�h! + E0 = �h!0 + E 0;
�h!

c0
=

�h!0

c0
cos� + p

0
cos�;

0 =
�h!0

c0
sin� � p0sin�:

(29)

Here �h is the Planck constant, ! and !0 are the frequencies of the incident

and scattered 
-quanta, �h! and �h!0 are the energies of these quanta. The

momentum of the incident 
-quantum is directed along the � x-axis, � is the

scattering angle of 
0-quantum, � is the scattering angle of electron e0. The

angle � is counted counterclockwise; the angle � is counted clockwise. Let us

rewrite the momentum conservation law in the form

p
02
cos

2
� =

��h!
c0
� �h!0

c0
cos�

�2
; p

02
sin

2
� =

��h!0
c0

�2
sin

2
�; (30)

12



and square this. By summing the result obtained and by using the conservation

energy law and the dispersion expression (17), we �nd the known formula for

the scattered 
0-quantum angular distribution and its frequency [1, 2]

!
0 =

!

1 + �h!
E0
(1� cos�)

: (31)

With the help of (31) we �nd the scattered 
0-quantum momentum:

p0
 =
�h!0

c0
(cos�; sin�) =

�h!

c0[1 +
�h!
E0
(1� cos�)]

(cos�; sin�): (32)

The scattered electron momentummay be found by means of putting (31)

into (30):

p
0
cos� =

�h!

E0
mc0

(E0 + �h!)(1 � cos�)
E0 + �h!(1 � cos�) ;

p
0
sin� =

�h!

E0 mc0
E0sin�

E0 + �h!(1 � cos�) :
(33)

p
0(�) =

�h!

E0 mc0

q
E02sin2� + (E0 + �h!)2(1� cos�)2

E0 + �h!(1 � cos�) : (34)

The relationship between the scattered electron angle and the scattered 

0-

quantum angle may be derived from (33) and takes the form

tg� =
E0sin�

(E0 + �h!)(1 � cos�) : (35)

The equality � = 0 induces the solutions � = �k�; k = 0; 1; 2; : : :, which

corresponds to propagation of the scattered 

0-quantum along and opposite

the direction of moving the Compton electron. Suppose � = 0 and � = �,

we �nd the expressions for the forward scattered electron momentum p
0 with

� = 0:

� = 0; � = 0; !
0 = !; p

0

�=0 = 0;

� = 0; � = �; !
0 =

!

1 + 2�h!
E0

; p
0

�=� =
�h!

E0 mc0
h
1 +

E0
E0 + 2�h!

i
:

(36)

The Compton-electron energy may be found by putting the formula (34)

into the dispersion relationship (17):

E 0 =
s
E02 + �h2!2

E02sin2� + (E0 + �h!)2(1 � cos�)2
[E0 + �h!(1� cos�)]2

=

E0 + �h2!2(1� cos�)

E0 + �h!(1� cos�)
:

(37)

13



The second, simple form of this formula was derived by using the energy

conservation law (29) taking into account the frequency !0 from (31). It is

essential that all the results obtained are independent of concrete expressions

for the energy and momentum(E = mc0
2
=

p
1� v2=c0

2, p = mv=
p
1� v2=c0

2

for M4
1; E = mc0

2
p
1 + v2=c0

2, p = mv for M4
2). Therefore, in view of

the laws of conservation (29) and the dispersion relationship (17), these are

common to both the Minkowski spaces. The distinctions arise when the

transformational properties of the time "t" for the M4
1 and M

4
2-spaces are

taken into account in calculating the velocities of the scattered 

0-quantum

and Compton electron. By using Formula (34), we �nd that in theM4
2-space

the Compton electron velocity is

v
0(�) =

�h!

E0 c0

q
E02sin2� + (E0 + �h!)2(1� cos�)2

E0 + �h!(1� cos�)
: (38)

It is equal to zero with � = 0. When � = �, the electron velocity will exceed

the speed of light c0 if the following inequality holds:

v
0(� = 0; � = �) = c0

�h!

E0
2(E0 + �h!)

E0 + 2�h!
> c0: (39)

According to (39), faster-than-light motion of the forward-scattered electron

begins from the energy of the incident 
-quantum:

�h! >
E0p
2
� 360 keV: (40)

Thus, it follows from the kinematics of Compton-e�ect that in scattering

the 
-quantum in the M
4
2-Minkowski space, the appearance of electron

faster-than-light motion is possible. This motion begins from the 
-quantum

energy exceeding 360 keV. For going to SR, the following relations may be

used:

v
0 =

w
0q

1� w02=c0
2

; w
0 =

v
0q

1 + v0
2
=c0

2

; (41)

where v0 is the velocity of Compton electron in the M4
2-space, w

0 is the

velocity of Compton electron in the M4
1-space:

w
0(�) =

�h!

E0 c0
vuut E02

�h2!2 +
E0

2[E0+�h!(1�cos�)]2

[E0
2sin2�+(E0+�h!)2(1�cos�)2]

< c0: (42)

14



The relations (41) correspond to the equality of the scattered electron energy

in both the Minkowski spaces.

To calculate the scattered 
0-quantum velocity in the M4
2-space, the use

of the energy-momentum conservation law is scarce. Certain assumptions of

the nature of scattering are necessary.

6 Compton scattering possible mechanisms

6.1 Local scattering

Suppose, an incident 
-quantum is scattered by an immobile electron in the

point of its localization in accordance with the Feynman diagram corresponding

to the process




A
A�
�

�
�A
A



0


 + e
� ! 


0 + e
�0

:

(The thin lines correspond to 
-quanta, the bold line correspond to electrons).

As a result of the interaction the scattered 
0-quantum velocity will be equal

c
0 = c0 = 3�1010 cm/s and independent of the scattering angle � in accordance

with c
0 = c0

p
1 + v2=c0

2, if v = 0. The forward scattered 

0-quantum

velocity (� = 0), as well as the back scattered 

0-quantum velocity (� = �)

will be equal the same value of 3 � 1010 sm/s. The electron gains the velocity

(38), becoming the electron e�
0

.

6.2 Non-local scattering. Version A

According to quantum electrodynamics concepts [1, 2], suppose the scattering

is described by the Feynman diagram corresponding to the process




A
A �

�

�
� A

A



0


 + e
� ! (e�)v ! 


0 + e
�0

:

The incident 
-quantum is absorbed by the immobile electron in some point of

space-time, after which an intermediate state is formed, the virtual electron

15



e
�

v. Next the virtual electron emits the 
0-quantum in another point of

space-time and becomes the free scattered electron e
�0

. By determining

the electron mass mv and the virtual electron velocity vv from the energy-

momentum conservation law 1

�h! + E0 = mvc0
2(1 + vv

2
=c0

2)1=2; �h!=c0 = mvvv; (43)

we �nd the expression for the virtual electron mass and the its velocity

mv =

p
E02 + 2�h!E0

c0
2

;

vv = c0
�h!p

E02 + 2�h!E0
� c0

r
�h!

2E0 ; if �h! � E0:
(44)

The scattered 
0-quantum velocity will be equal

c
0 = c0

s
1 +

vv
2

c0
2
= c0

s
1 +

�h2!2

E02 + 2�h!E0
: (45)

It does not depend on the scattering angle � of 
0-quantum and with �h! � E0
is equal c0 � c0

p
�h!=2E0 > c0.

6.3 Non-local scattering. Version B

Let us note that the set of equations with a virtual electron admits another

mechanismof Compton scattering. Suppose the virtual electron e�v transmutes

spontaneously into the free electron e
�0

that emits the 

0-quantum (the

scattered gamma-quantum). In the M4
1-space both the mechanisms lead

to the same result because the speed of light is constant. In the M4
2-space

distinctions between A and B-versions are more essential. Indeed, in the case

of B the scattered 
0-quantum velocity will be determined by the expression

c
0 = c0

s
1 +

v0
2

c0
2
= c0

s
1 +

��h!
E0
�2 E02sin2� + (E0 + �h!)2(1� cos�)2

[E0 + �h!(1� cos�)]2 (46)

1The full set of equations with participation of the virtual electron may be written as
follows:

�h! + E0 = mvc0
2(1 + vv

2=c0
2)1=2; �h!=c0 = mvvv;

mvc0
2(1 + vv

2=c0
2)1=2 = �h!0 + E0(1 + v02=c0

2)1=2;
mvvv = (�h!0=c0)cos� + p0cos�; 0 = (�h!0=c0)sin� � p0sin�:

By eliminatingmvc0
2(1 + vv

2=c0
2)1=2 and mvvv, this Set may be reduced to Set (29).

16



instead of the formula (45), because the Compton electron velocity (38) di�ers

from the virtual electron velocity (44). As a result the scattered 
0-quantum

velocity comes to depend on the angle of its scattering. In the case of forward-

scattering with � = 0; � = 0 this velocity is minimal and equal c0 = c0. The



0-quantum energy is maximal and coincides, according to (31), with the

incident 
-quantum energy �h!0 = �h!. With the small scattering angles

when sin� � �, cos� � (1 � �
2
=2) the scattered 


0-quantum velocity is

c
0 � c0f1 + (�h!=E0)2[E02�2 + (�h!)2�4=4]=[E0 + �h!�2=2]2g1=2, if �h! � E0.
With � � E0=�h! it is equal c0 � ±0[1 + (�h!�=E0)2=2] � c0. In the case of

back-scattering with (� � �) the scattered 

0-quantum energy is minimal

�h!0 � �h!=(1 + 2�h!=E0) � E0=2, but its velocity is maximal c0 � c0(�h!=E0),
if �h! � E0.

7 Comparison of the kinematics of Compton

- e�ect within the M 4
1 and M

4
2-spaces

In sum, we can note the following features of Compton-e�ect kinematics

within the Minkowski spaces (M4
1;M

4
2) � F

5.

� The expression for the scattered 
0-quantum frequency !0 in the M4
2-

space coincides with the similar expression for the scattered 
0-quantum

frequency in the M4
1-space (as in SR).

� The expressions for the scattered electron momentum and energy and

for the scattered 

0-quantum momentum and energy in M4

2 coincide

with the similar expressions within M4
1.

� The distinctions arise in calculating the velocities of the scattered 

0-

quantum and scattered electron. Within M4
1 the velocity of scattered

quantum is always equal c0 = 3 � 1010 cm/s. The Compton electron

velocity does not exceed c0.

� In M4
2 in scattering the incident 
-quantum by the immobile electron

in the point of its localization, the scattered 

0-quantum velocity does

not depend on the scattering angle and is equal c0 = 3 � 1010 cm/s (as

in SR).

� In M
4
2 in emitting the scattered quantum by the virtual electron

(version A), the scattered 

0-quantum velocity is equal c

0 =

c0

q
1 + �h2!2=(E02 + 2�h!E0) and exceeds c0.
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� InM4
2 in the case of spontaneous transmutation of the virtual electron

into the free electron with the following emission of the scattered 

0-

quantum (version B) the scattered 
0-quantum velocity depends on the

angle of its scattering and is equal c0 � c0 if the scattering occurs

forward in the range of angles � � E0=�h!, and c0 � c0(�h!=E0) for the
back-scattering.

� In M4
2 the Compton electron velocity v0 trends to 1 with �h! ! 1.

Faster-than-light motion of the forward-scattered electron begins from

the energy of incident quantum E0=
p
2 � 360 keV.

� In both the Minkowski spaces the motion of forward-scattered electron

(� = 0) corresponds to the motion of scattered 

0-quantum in the

backward direction (� = �) with the energy �h!0 = �h!=(1 + 2�h!=E0) �
E0=2 � 250 keV if �h! � E0 (as in SR).

8 M
4
2-space and quantum theory equations

Let us make clear how the basic equations of quantum theory (Schr�odinger,

Klein-Gordon-Fock and Dirac equations) may be written in the M4
2-space.

For this purpose we shall use the standard approach and pass on to the

operator form for energy and momentum in the line 6 of Table 1 accordingly

to the rule:

E ! i�h(c0=c)@=@t; p!�i�hr: (47)

Here the operator for energy takes the well-known form [2], if c = c0. The

operator for momentum is standard [2]. Then for the free motion of a

quantum particle we have the following equations.

The Schr�odinger equation. Taking into consideration that in non-

relativistic approximation with v � c0 the velocity of light c � c0 and the

expression for kinetic energy T = p
2
=2m is the same for M4

2 and M4
1, we

�nd that the Schr�odinger equation [2] will be the same in both the spaces:

�
i�h@t +

�h2

2m
4
�
 (t;x) = 0; (48)

where m is the mass of a particle,  (t;x) is the wave function. As a result the

non-relativistic quantum theory (the quantum mechanics) and the classical

mechanics are the same for M4
2 and M

4
1. The di�erence will appear in

the relativistic range of motion. In M4
2 this range begins with the energy

E � p
2E0e � 723 keV for electron and E � p2E0p � 1:33 GeV for proton.

(The velocities of these particles will be equal or above c0 = 3 � 1010 cm/s).
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The Klein-Gordon-Fock equation. With the help of the dispersion relation

(17) we obtain � 1
c2
@tt �4+

m
2
c0

2

�h2

�
�(ct;x) = 0: (49)

The Dirac equation.�
i


0 1

c
@t + i(
1@x + 


2
@y + 


3
@z) � mc0

�h

�
	(ct;x) = 0: (50)

Here 
0, 
1, 
2, 
3 are the Dirac matrices, �(ct;x) and 	(ct;x) are the wave

functions. As distinct fromM
4
1, in theM

4
2-space with c!1 the equations

(49), (50) are characterized by the appearance of solutions not depending on

the time because the components with the derivative with respect to time

vanish. If c = c0, the equations (49), (50) go into SR equations [1, 28].

9 Discussion and conclusion

It has been considered the version of a mathematical theory that is similar to

SR but di�ers from it in view of its being based on the metric of more general

form (1). Here the velocity of light run through the continuous spectrum of

values from c0 = 3�1010 cm/s to1. It is believed from formallymathematical

standpoint that the space with such a metric is 5-dimensional. It contains

two Minkowski space: the �rst space M4
1 on the hyper-plane c0 with the

local time x0 = c0t, where SR is realized, and the second space M4
2 with

the non-local time x0 =
R t
0
cd� , where realized is the theoretical version from

the present work and the publications [3] - [5]. Some like ideas are contained

in the well-known monograph of Pauli [7]. On the page 29 in discussing the

Michelson experiment, Pauli notes that according to Abraham the velocity

of light in frame K0 moving together with the interferometer is equal

c
0 = c

p
1� �2: (51)

This di�ers from the velocity of light c in laboratory frameK2. According to

Abraham the time dilatation is absent. The Abraham's viewpoint conforms

to the result of Michelson experiment but contradicts the relativity principle

because it leaves room for absolute motion [7].

It is interesting to note that if we �nd c from Abraham's formula and

postulate c0 = c0
0 = 3 � 1010 sm/s, we just obtain the relations (2) and (3) of

the present work that is in agreement with the principle of relativity. Thus,

2Abraham, 1908, � = V=c [7].
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the Abraham's point of view turned out to be associated in an indirect way

with the Finsler space (1) and with the presence of the two Minkowski spaces

M
4
1 and M

4
2 in it. This is the simplest example of turning to spaces of

such a type. However this simplicity makes deep sense as it is conditioned by

fundamental properties of 3-space and time such as isotropy and homogeneity.

The more complicated examples of non-homogeneous space-time with the

metric ds2 = c
�2N

n
[cdt + (1 � N )tdc]2 �Pj(dx

j � Nx
j
dc=c)2]

o
, where N

is the number, jcj < 1, j = 1; 2; 3, are considered in [27, 31, 32]. This

metric enables one to introduce three Minkowski spaces: on the hyper-plane

c = c0=const with the time x0 = c0
1�N

t, on the vectors (x0 = c
1�N

t; x
j =

(c�Nx; c�Ny; c�N z)) with the time x0 = c
1�N

t, and on the hyper-plane

t = t0=const with x
0 = c

1�N
t0. In the last case the role of time as a

scalar parameter will play the velocity of light c. Motions in this space will

happen beyond the conventional conception of time. At present it is not clear

what the possibility of existing additional Minkowski spaces means, as well

as whether this possibility has to do with the physical reality. It is a subject

for further investigations.

In sum, we have shown that in the M4
2-space it is possible to construct

the theory, which admits faster-than-light motions of electromagnetic �elds

and particles with real masses. As a subgroup of symmetry, it contains

the Poincar�e group. Unlike motions described by SR in M4
1, in the M4

2-

space it is possible to introduce the time similar to the universal Newton

time on the trajectory of a particle. The particle mass does not depend

on the velocity of its motion and is the fundamental constant as in classical

mechanics. According to the Compton-e�ect kinematics in theM4
2-space the

scattered electron will move faster than c0 = 3 � 1010 cm/s, if the incident 
-

quantum energy exceeds 360 keV. For example, in the case of the annihilation

quantum with the energy 511 keV and the propagation velocity c = c0 the

forward-scattered electron will be moving with the velocity 0:8c0 in theM
4
1-

space and 1:3c0 in the M4
2-space. This distinction (if it exists really) may

be experimentally detected by means of measuring the 
ight-time of the

Compton electrons and annihilation 
-quantum on the base 100 cm long.
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